wang970803588 发表于 2017-12-29 10:16:01

工具

NI VISION Assistant 2017版本增加一个工具(Processing Functions):个工具名字Flat Field Correction

Creating a Bright Field Image Using Vision Assistant StepsTo create a bright field image in Vision Assistant, make a script with the following steps:
Acquire an image.

[*]Add an Image Buffer step to save the acquired image.
[*]Add a Filters step. Select a Smoothing - Low Pass filter with a large Filter Size, or a Smoothing - Gaussian filter with a large Kernel Size. You can also use your own algorithm. This creates a bright field image.
[*]Add an Image Buffer step to save the bright field image.
[*]Add an Image Buffer step to retrieve the original acquired image stored in the first buffer step you created.
[*]Add a Flat Field Correction step. Select the Correction with specified bright field image option and set the Image Buffer to retrieve the bright field image.

The script should resemble the following image:

wang970803588 发表于 2017-12-29 10:18:28

为什么帖子的字数有限制,同时贴的图片都不见了,上个图片使用流程
页: [1]
查看完整版本: 工具

LabVIEW HALCON图像处理入门教程(第二版)
石鑫华机器视觉与LabVIEW Vision图像处理PDF+视频教程11种全套
《LabVIEW Vision函数实例详解》教程-NI Vision所有函数使用方法介绍,基于NI VISION2020,兼容VDM21/22/23/24